6. Un cilindro contiene agua hasta 7/10 de su capacidad, luego se ha extraído 2/5 del cilindro, ¿Qué parte le falta 10 5 ahora para llenar?

Respuesta:
Le falta la 7/10 parte para que pueda alcanzar su capacidad máxima
Explicación paso a paso:
El problema nos dice que el cilindro contiene inicialmente 7/10 de agua, entonces queremos entender que aún le falta una 3/10 parte para que pueda llegar a su máxima capacidad.
Esto lo hallamos restando 10/10 que es su capacidad máxima, menos 7/10 que es el total que tiene actualmente.
Faltarán 3/10 para que pueda llegar a su capacidad completa.
Nos sitúa una disminución de 2/5 de los 7/10, nos implica la resta de 7/10 y 2/5.
[tex] \bf \frac{7}{10} - \frac{2}{5} = \frac{(7)(5) - (10)(2)}{10 \times 5} = \frac{35 - 20}{50} = \frac{15}{50} = \frac{3}{10} [/tex]
Tenemos que la capacidad máxima es de 10/10, entonces ahora contiene 3/10.
Para saber qué tanto le falta debemos restar la capacidad máxima menos la capacidad que tiene ahora.
[tex] \bf \frac{10}{10} - \frac{3}{10} = \frac{7}{10} [/tex]
Entonces