Respuesta :
Recordemos las partes de una división
[tex]\boxed{\sf{D = dq+ r}}\hspace{20pt}\mathsf{Donde} \hspace{15pt}\begin{array}{ll}\mathsf{\blue{\rightarrow}\ D:Dividendo} &\mathsf{\blue{\rightarrow}\ q:cociente}\\\\\mathsf{\blue{\rightarrow}\ d:divisor}&\mathsf{\blue{\rightarrow}\ r:residuo}\end{array}[/tex]
Diremos que:
[tex]\sf{r_{m\acute{a}x}=q - 1}[/tex]
Entonces
[tex]\begin{array}{cccccccccc}\\\boldsymbol{\bigcirc \kern-11.5pt \blacktriangleright} \:\: \sf{d = 8}&&&&\boldsymbol{\bigcirc \kern-11.5pt \blacktriangleright} \:\:\sf{q = 4}&&&&\boldsymbol{\bigcirc \kern-11.5pt \blacktriangleright} \:\:\sf{r_{m\acute{a}x}=4 - 1 = 3}\end{array}[/tex]
Reemplazamos
[tex]\begin{array}{c}\\\sf{D = dq + r}\\\\\sf{D = (8)(4) + (3)}\\\\\sf{D = 32 + 3}\\\\\boxed{\boxed{\boldsymbol{\red{\sf{D = 35}}}}}\end{array}[/tex]
Rpta. El dividendo es 35.
[tex]\boxed{\sf{{R}}\quad\raisebox{10pt}{$\sf{\red{O}}$}\!\!\!\!\raisebox{-10pt}{$\sf{\red{O}}$}\quad\raisebox{15pt}{$\sf{{G}}$}\!\!\!\!\raisebox{-15pt}{$\sf{{G}}$}\quad\raisebox{15pt}{$\sf{\red{H}}$}\!\!\!\!\raisebox{-15pt}{$\sf{\red{H}}$}\quad\raisebox{10pt}{$\sf{{E}}$}\!\!\!\!\raisebox{-10pt}{$\sf{{E}}$}\quad\sf{\red{R}}}\hspace{-64.5pt}\rule{10pt}{.2ex}\:\rule{3pt}{1ex}\rule{3pt}{1.5ex}\rule{3pt}{2ex}\rule{3pt}{1.5ex}\rule{3pt}{1ex}\:\rule{10pt}{.2ex}[/tex]